Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732679

RESUMO

Recent reports indicate that the development of electricity generation using wind turbines will continue to grow. Despite the long service life of wind turbine blades, their technological life comes to an end at a certain point. Currently, there is no industrial method for recycling them, and the proposed solutions need to consider a complete and comprehensive approach to this material. In many countries, these blades are stored in special landfills and await proposals for rational recycling. It has been proposed that this recyclable yet still troublesome raw material be used in building sheathing boards. Sheathing boards used in the construction industry have a relatively long lifecycle. Three types of polymer chips and two resins, i.e., PF and MUF, were used in the study. The boards' quality was assessed per the standards specified for particle boards. The resulting boards were characterized by strengths above 20 N/mm2 and an elastic modulus close to 4000 N/mm2. Slightly better results were obtained with the MUF resin.

2.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139896

RESUMO

Due to the fact that impregnation with fire retardant usually reduces the strength of the produced particleboards, this research was carried out to investigate whether it is possible to use phenol-formaldehyde (PF) resin modified using various amounts (0%, 5%, 10%, 15%, and 20%) of polymeric 4,4'-methylene diphenyl diisocyanate (pMDI) for this purpose. The need to optimize the addition of pMDI is particularly important due to health and environmental aspects and high price. Furthermore, the curing process of hybrid resins is still not fully explained, especially in the case of small loadings. Manufactured particleboards differed in the share of impregnated particles (50% and 100%). The mixture of potassium carbonate and urea was used as the impregnating solution. Based on the outcomes of hybrid resins properties, it was found that the addition of pMDI leads to the increase in solid content, pH, and viscosity of the mixtures, to the improvement in resin reactivity determined using differential scanning calorimetry and to the decrease in thermal stability in the cured state evaluated using thermogravimetric analysis. Moreover, particleboard property results have shown that using impregnated particles (both 50% and 100%) decreased the strength of manufactured boards bonded using neat PF resin. However, the introduction of pMDI allowed us to compensate for the negative impact of fire-retardant-treated wood and it was found that the optimal loading of pMDI for the board containing 50% of impregnated particles is 5% and for board made entirely of treated wood it is 10%.

3.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569976

RESUMO

Insulating materials made from straw are becoming increasingly popular in the construction industry. Straw can be used in the construction of buildings as uncompressed straw chips or in the form of compressed panels. This study aimed to determine the possibility of manufacturing boards from straw particles with densities in the range of 150-400 kg/m3, allowing favorable mechanical properties while simultaneously providing high thermal and acoustic insulation properties. The study also analyzed the influence of the degree of carpentry density on the quality of the manufactured boards. The study shows that insulation boards can be produced from straw particles with satisfactory properties already at densities in the range of 200-150 kg/m3. Boards with this density have a compressive strength of 150 kPa, thermal resistance of 0.033-0.046 W/(m·K), and a sound absorption coefficient above 0.31.

4.
Materials (Basel) ; 16(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37445088

RESUMO

Nowadays, a significant increase in interest in renewable energy sources can be observed. Wind farms have been one of the solutions representing this trend for many years. One of the important elements of windmills is the blades. The data indicate that what to do with the blades after their use is a global problem, and so it is important to find a way to recycle them. Hence, this work aimed to use these blades in the production of wood-based materials. Two fractions of a fragmented blade were used for the tests: a small one and large one. Boards characterized by densities of 650 kg/m3 and 700 kg/m3 were produced, in which the assumed substitution of the wood material with a polymer was 20% or 40%. Mechanical properties such as bending strength (MOR), modulus of elasticity (MOE), and internal bond strength (IB) were investigated. The 2S65 variant achieved the highest static bending strength and a modulus of elasticity of 2625 N/mm2. The second best result was noted for the 4S65 variant, which was significantly different from the 2S65 variant. In the case of the variants with a density of 700 kg/m3, no significant differences were found and their results were significantly lower. Moreover, research on thickness swelling (TS) after 24 h of immersion and water absorption (WA) were also conducted. The obtained results indicate that the manufactured boards are characterized by good physical and mechanical properties.

5.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374584

RESUMO

This study investigated the mechanical, physical, and thermal properties of three-layer particleboards produced from annual plant straws and three polymers: polypropylene (PP), high-density polyethylene (HDPE), and polylactic acid (PLA). The rape straw (Brassica napus L. var. Napus) was used as an internal layer, while rye (Secale L.) or triticale (Triticosecale Witt.) was applied as an external layer in the obtained particleboards. The boards were tested for their density, thickness swelling, static bending strength, modulus of elasticity, and thermal degradation characteristics. Moreover, the changes in the structure of composites were determined by infrared spectroscopy. Among the straw-based boards with the addition of tested polymers, satisfactory properties were obtained mainly using HDPE. In turn, the straw-based composites with PP were characterized by moderate properties, while PLA-containing boards did not show clearly favorable properties either in terms of the mechanical or physical features. The properties of straw-polymer boards produced based on triticale straw were slightly better than those of the rye-based boards, probably due to the geometry of the strands, which was more favorable for triticale straw. The obtained results indicated that annual plant fibers, mainly triticale, can be used as wood substitutes for the production of biocomposites. Moreover, the addition of polymers allows for the use of the obtained boards in conditions of increased humidity.

6.
Materials (Basel) ; 16(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37109823

RESUMO

Wood is a widely used building material [...].

7.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431598

RESUMO

This study aimed to evaluate the mechanical properties determined in a 4-point bending test of beams made of lumber from which knots had been locally removed and the resulting loss replaced with sound wood. Three sets of beams were prepared, which differed in the number of layers/lamellas and the position of the lamellas from which edge knots were removed. All the lamellas used in the tests were subjected to a modulus of elasticity assessment. In addition to the distribution of defects, it determined the position of a given piece in the beam structure. The tests showed that high mechanical properties could characterise the beams produced in this way, i.e., a modulus of elasticity close to 12 kN/mm2 and a strength above 40 N/mm2, if the lamellas without knots were located below the outer tension lamella. Significantly better results were obtained when PUR glue was used in the inserts rather than MUF. In this case, beams with an improved outer lamella in the tension zone using semi-circular inserts glued with PUR glue had an average strength of 34.6 N/mm2.

8.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433163

RESUMO

This work examines the possibility of applying non-modified nanocellulose and nanocellulose functionalized with 3-aminopropyltriethoxysilane (APTES) as a formaldehyde scavenger for commonly used urea-formaldehyde (UF) adhesive. The effect of silanization was determined with the use of Fourier transform infrared spectroscopy (FTIR), flame atomic absorption spectrometry (FAAS), and elemental analysis. Moreover, the ability of cellulosic nanoparticles to absorb the formaldehyde from an aqueous solution was investigated. After homogenization, cured UF adhesives were examined with the use of FTIR, energy-dispersive spectroscopy (SEM-EDS), and the perforator method to determine the content of formaldehyde. Manufactured boards made of rape straw particles and wood particles were tested in terms of their physico-mechanical properties and formaldehyde emission. Studies have shown that the applied method of silanization was effective. Furthermore, in the case of non-modified nanocellulose, no sign of formaldehyde scavenging ability was found. However, the functionalization of cellulosic nanoparticles with APTES containing an amino group led to the significant reduction of formaldehyde content in both the aqueous solution and the UF adhesive. The mechanical properties of both strawboards and particleboards were improved due to the nanocellulose reinforcement; however, no effect of silanization was found. Nevertheless, functionalization with APTES contributed to a decrease in formaldehyde emission from boards, which was not found in the case of the introduction of non-modified cellulosic nanoparticles.

9.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234081

RESUMO

The aim of this study was to apply waste wood particles (WP) with different sizes from primary wood processing as a filler for open-cell PUR foams. For this purpose, various wood particle sizes were added as a filler for polyurethane foams (PUR). The effects of the addition of of 0.05−<0.125 mm, 0.125−<0.315 mm, 0.315−1.25 mm, and >1.25−2.0 of WP to the polyurethane matrix on the density, the kinetics of PUR foaming, the cell structure, and the morphology were investigated. Scanning electron microscope (SEM) and X-ray computer tomography were used. Based on the results, it was found that the addition of WP in the amount of 10% leads to an increase in density with an increase in particle size. The research shows that the morphology of the PUR-WP foam is influenced by its particle size. The difference in the number and size of cells in PUR-WP composites depends on the wood particle size. The addition of dust causes the formation of cells of much smaller sizes; confirmed by SEM images. Moreover, computer tomography clearly demonstrates that the WP are well-dispersed within the foams' structures.

10.
Materials (Basel) ; 15(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295268

RESUMO

The aim of the presented study was to apply various bark species (birch, beech, maple, pine and spruce) as fillers for urea-formaldehyde (UF) resin in three-layer plywood manufacturing. For this purpose, all types of bark were ground and added to the adhesive mixture. The resultant plywood was subjected to investigations of the following: tensile strength, modulus of elasticity (MOE), bending strength (MOR) and formaldehyde emission. The results indicate a reduction in the tensile strength. Moreover, the lack of significant improvement in strength parameters can be explained by too high a load of the filler (20 wt%). In the case of formaldehyde emissions, a reduction was observed for birch (B-1), beech (B-2), maple (B-3) and pine bark (B-4). In addition, an increase in the emission of formaldehyde was recorded only for spruce bark.

11.
Materials (Basel) ; 15(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143690

RESUMO

The aim of this study was to determine the mechanical properties of laminated beams containing selected wood species in the tension zone using a four-point bending test. Three beam types were manufactured with respect to the timber used in the tension zone, i.e., beams containing oak or beech timber of I and II quality class and pine timber with no defects (as defects had been removed). The manufactured beams were assessed with respect to bending strength and the modulus of elasticity. The obtained results were compared with the performance of BSH (Industrial beams GL made in Germany-Brettschichtholz) industrial beams. We concluded that beams made from pine timber are an appropriate alternative to spruce beams. The static bending strength of the beams made with hardwood faces was 70% higher than that of beams made with pine wood. All types of beams manufactured in the laboratory met the requirements of at least the GL24c class.

12.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955296

RESUMO

In this study, the possibility of using sawdust, a by-product of primary wood processing, as a filler (WF) for rigid polyurethane (PUR) foams was investigated. The effects of the addition of 5, 10, 15 and 20% of WF particles to the polyurethane matrix on the foaming process, cell structure and selected physical-mechanical properties such as density, thermal conductivity, dimensional stability, water absorption, brittleness, compressive and bending strengths were evaluated. Based on the results, it was found that the addition of WF in the amount of up to 10% does not significantly affect the kinetics of the foam foaming process, allowing the reduction of their thermal conductivity, significantly reducing brittleness and maintaining high dimensional stability. On the other hand, such an amount of WF causes a slight decrease in the compressive strength of the foam, a decrease in its bending strength and an increase in water absorption. However, it is important that in spite of the observed decrease in the values of these parameters, the obtained results are satisfactory and consistent with the parameters of insulation materials based on rigid PUR foam, currently available on the market.

13.
Materials (Basel) ; 15(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013866

RESUMO

This research evaluated the possibility of using sawmill by-products from the roundwood-processing line in the production of wood-based panels. Due to its number of favorable properties, interesting chemical composition and large reserves resulting from the lack of industrial applications, the research focused particularly on the use of bark. Manufactured variants of boards differed in the proportions of wood chips to bark (70:30, 60:40, 50:50). Moreover, the boards containing only wood chips and a mixture of chips and sawdust were used as references. Urea-formaldehyde adhesive mixed with ammonium nitrate as a hardener was applied as a binding agent for the boards. Based on the mechanical properties (modulus of elasticity, modulus of rupture, internal bonding), physical properties (density, thickness swelling, water absorption) and content and emission of formaldehyde, it was found that it is possible to produce boards characterized by good properties from sawmill by-products without advanced processing. Moreover, the use of bark instead of sawdust in order to increase the homogeneity of the cross-section allows one to obtain panels with significantly lower formaldehyde emission and water uptake.

14.
Materials (Basel) ; 15(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683230

RESUMO

Engineered wood products (EWP) such as glulam beams are gaining more and more popularity due to several advantages resulting from the wood itself, as well as the constant search for structural materials of natural origin. However, building materials face some requirements regarding their strength. Thus, the study aimed to assess the static bending strength of structural beams produced with the use of pine wood, after the periodic loading of approximately 80 kN for a year. The manufactured beams differed in the type of facing layers, i.e., pine timber with a high modulus of elasticity and plywood. The produced beams, regardless of their structure, are characterized by a similar static bending strength. Moreover, it has been shown that the loading of beams in the range of about 45% of their immediate capacity does not significantly affect their static bending strength and linear modulus of elasticity.

15.
Materials (Basel) ; 15(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683269

RESUMO

Pine timber of Polish origin intended for structural purposes is characterized by significant variability in the quality parameters. Technological suitability determined on the basis of relevant international classifications is based on the assessment of both selected mechanical and physical properties of wood. Moreover, the description of visual properties is also a valuable indicator regarding defect distribution. In the group of quality features playing a crucial role in the classification of sawn timber, there are knots, disruptions of grains, cracks, etc. Thus, the aim of the research was to determine the correlation between the presence of selected defects and the strength properties of individual timber pieces. This type of study is based on a nondestructive test method that allows for high optimization of sawn materials processing. In the case of sawn timber of Polish origin, the modulus of elasticity (MOE) determined using the sonic test is commonly used as a criterion. The research material was harvested from southern Poland. The results of the conducted studies confirmed a correlation between an increasing occurrence of particular types of defects and the results of MOE. Furthermore, as a result of the performed investigations, no significant effect of narrow surface cracks on strength properties was observed.

16.
Materials (Basel) ; 15(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35683273

RESUMO

Glulam beams are increasingly used in the construction industry because of their high strength and the possibility of using round timber with smaller cross-sections. The load-bearing capacity of beams is strongly related to the quality of the outer layers and, in the case of wood, especially the tension zones. For these reasons, this study decided to replace the outer lamella with tensile plywood. The produced beams were subjected to static bending strength and modulus of elasticity evaluation. It was shown that the best static bending strength values were obtained for beams containing plywood in the tension layer. However, the change in structure in the tension zone of beams made of glued laminated timber results not only in an increase in the load capacity of elements produced in this way but also in a decrease in the range/range of the obtained results of bending strength. This way of modifying the construction of glued laminated beams allows a more rational use of available pine timber.

17.
Materials (Basel) ; 15(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35591327

RESUMO

Numerous studies have shown that the geometry of micro-joints significantly affects the strength of the so joined timber element. The bending strength increases by creating a larger bonding area by increasing the length of the wedge joint. Although this type of joint has been successfully used for many years, it can still be troublesome to make. For these reasons, the present study investigated an easy-to-fabricate wedge joint, which we folded during the beams' formation and glued with the same adhesive as the individual lamellas. Although the research has not fully answered all the questions relevant to both scientific and technological curiosity, it indicates the great potential of this solution. Following the principle adopted in the ongoing wood optimisation work, we concluded that the beams of the target cross-section should be produced, and it should only be possible to cut them to a certain length. In this approach, we only removed defects at critical points for the beam structure and, in this way, up to 30% of the timber processed could be saved or better utilised.

18.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591488

RESUMO

Engineered wood products, such as glulam beams, attract much attention from the building industry in recent years. Therefore, there is a constant necessity to seek new models of structural beams, which assume the use of outsized sawn wood pieces as an alternative for the standard construction timber. Three variants of glulam beams, composed of the main yield and side boards arranged in various structures, were proposed. Moreover, the usefulness of wedge-jointed, small-sized timber pieces was also investigated. The manufactured beams were tested, in terms of their mechanical properties, such as bending strength, elastic energy, modulus of elasticity, and resilience. The outcomes have shown that the beams manufactured using wedge-bonded timber of lower grade do not deviate considerably from beams produced from homogeneous lamellas. Furthermore, the results of modulus of elasticity, in the case of the three-layered beams composed of both small-sized non-homogenous main yield and side boards, exceeded the requirements from EN 14080. It allowed us to classify the obtained materials as GL 32c, which is the highest grade specified within the standard.

19.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885466

RESUMO

The aim of this study was to assess the static bending strength of pine glulam manufactured when obtaining the main yield, i.e., structural timber or timber to be used in the production of structural glulam. Analyses were conducted on pine timber harvested from three different locations in Poland. Two beam variants were manufactured, differing in the timber arrangement, horizontal vs. vertical. It was shown that the static bending strength of beams manufactured in the vertical timber arrangement variant is slightly higher than that of beams produced from horizontally arranged layers, with the latter beams characterised by a smaller confidence interval for this strength. Moreover, it was found that the difference in the value of the 5th percentile for both beam types is slight and both beam types are considered to exhibit a high bending strength of over 40 N/mm2.

20.
Materials (Basel) ; 14(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34640161

RESUMO

This paper presents the strength properties of wooden trusses. The proposed solutions may constitute an alternative to currently produced trusses, in cases when posts and cross braces are joined with flanges using punched metal plate fasteners. Glued carpentry joints, although requiring a more complicated manufacturing process, on the one hand promote a more rational utilisation of available structural timber resources, while on the other hand they restrict the use of metal fasteners. The results of the conducted analyses show that the proposed solutions at the current stage of research are characterised by an approx. 30% lower static bending strength compared to trusses manufactured using punched metal plate fasteners. However, these solutions make it possible to produce trusses with load-bearing capacities comparable to that of structural timber of grade C24 and stiffness slightly higher than that of lattice beams manufactured using punched metal plate fasteners. The strength of wooden trusses manufactured in the laboratory ranged from nearly 20 N/mm2 to over 32 N/mm2. Thus, satisfactory primary values for further work were obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...